LES OF A STRATIFIED TURBULENT BURNER WITH A THICKENED FLAME MODEL COUPLED TO ADAPTIVE MESH REFINEMENT AND DETAILED CHEMISTRY

C. MEHL¹, S. LIU², Y. C. SEE², O. COLIN¹

¹ IFPEN, 1-4 avenue du Bois-Préau, Rueil-Malmaison, 92500, France
² Convergent Science, 6400 Enterprise Ln, Madison, WI 53719, USA

Regulation on pollutants emissions become stricter
> Need for highly accurate numerical tools to design systems

• Large-Eddy Simulation (LES) routinely used in the industry

New technologies with low emissions based on lean premixed and stratified combustion regimes

MODELING ISSUES IN PREMIXED/STRATIFIED COMBUSTION

Large-Eddy Simulation (LES): Large resolved scales + small modelled scales

have to be modeled. · · · ·) ·********* Unresolved (Typically 0.5 to a few mm)

ISSUE 1: The flame structure is not resolved on the LES grid as the LES grid size is typically larger than the flame.

ISSUE 2: Interactions between unresolved turbulent structures and the flame front

THICKENED FLAME MODEL (TFM)

• The flame front is artificially thickened to ensure sufficient resolution

$$\mathcal{F} = \max\left(\frac{n_{res}\Delta_x}{\delta_l^0}, 1\right)$$

• Subgrid scale (SGS) interactions described by a wrinkling factor:

thickened flame

$$S_T = \Xi_\Delta S_l^0$$

Performance of the TFM model decreases when the mesh size increases (less flame/turbulence interactions resolved; more is modelled)

LES is expensive => mesh resolution is limited

Opportunity: Adaptive Mesh Refinement (AMR)

> Idea: Refine the mesh only where necessary and hence reduce computational costs

OBJECTIVE: couple TFM and AMR to propose a model for highly accurate simulation of gas turbines at low computational cost

SSUF

- I. TFM-AMR model: coupling Thickened Flame Model with Adaptive Mesh Refinement
- II. Validation of TFM-AMR on planar laminar flames
- **III. Simulation of the Cambridge stratified burner**
- **IV. Conclusion**

ADAPTIVE MESH REFINEMENT: PRINCIPLE

Resolved fields and modeling variables $\widetilde{Y}_k, \, \widetilde{T}, \, \widetilde{u}, \, \mathcal{F}, \dots$

Dynamic TFM modeling framework: We only thicken in the flame

=> Definition of a flame sensor S

Redefinition of the thickening factor:

$$\mathcal{F} = \mathcal{F}_{max} + (S-1)\mathcal{F}_{max}$$

AMR is activated when S > 0 (equivalently: $\mathcal{F} > 1$)

TFM-AMR MODEL: AMR LEVEL DEFINITION

• AMR mesh size: $\Delta_x = \Delta_x^{Base} / 2^{n_{AMR}}$ => Thickening factor in flame region: $\mathcal{F}_{max} = \max\left(\frac{n_{res}\Delta_x^{Base}}{2^{n_{AMR}}\delta_l^0(\phi)}, 1\right)$

• Default strategy: set a constant AMR refinement level when the AMR sensor is active

PLANAR LAMINAR FLAME SET-UP

Set-up: planar laminar flame propagation

Laminar flame propagation speed:

$$S_c(t) = \frac{1}{\rho_u \left(Y_{fuel}^u - Y_{fuel}^b\right)} \int_{x=-\infty}^{+\infty} \rho \dot{\omega}_{fuel}(x,t) dx$$

Numerical set-up:

- Solver: CONVERGE
- Equivalence ratio: $\phi = 0.75$
- 30 species skeletal mechanism
 - for CH_4

SIMULATION 1: TFM on a regular mesh

SIMULATION 2: TFM-AMR with $\mathcal{F}_{target} = 5$ on coarse mesh

SIMULATION 3: TFM-AMR with $\mathcal{F}_{target} = 2.5$ on coarse mesh

ransports Energy

RESULTS: LAMINAR FLAME PROPAGATION

RESULTS: LAMINAR FLAME STRUCTURE

III. VALIDATION ON A 3-D BURNER: EXPERIMENTAL SET-UP

Cambridge SwB burner (Sweeney et al., 2012):

OPEF Flow - In - Re Flam	RATING CONDITIONS : ner/Outer tube speeds: U_i eynolds numbers: $Re_i = 59$ e:	$= 8.31, U_o = 18.7$ 960, $Re_o = 11500$	
	Configuration	Inlet mixtures	I
	SwB1 (premixed)	$\phi_i=0.75$; $\phi_o=0.75$	I
	SwB5 (stratified)	$\phi_i=1.0$; $\phi_o=0.5$	I
Solve Chen - 30 - SA sp Physi - Tu - S(er: CONVERGE CFD SOFTWA nistry: O species skeletal mechanis AGE chemistry solver with a beed up calculations ical models: urbulence model: SIGMA GS wrinkling model : algebra	RE m daptive zoning to aic Charlette	

VALIDATION STRATEGY

Non-reacting flow simulation on coarse LES grid

refined grid

 $\mathcal{F}_{target} = \mathbf{5} \Rightarrow \Delta_x = 0.5mm$ for $\phi = 0.75$

TFM-AMR MODEL BEHAVIOR

SUSTAINABLE MOBILITY

16 | © 2016 IFPEN

COMPARISON WITH EXPERIMENT: TEMPERATURE

COMPARISON WITH EXPERIMENT: CARBON MONOXIDE

AMR MESH REFINEMENT STUDY: STRATEGY

AMR refinement study:

TEMPERATURE STATISTICS

CARBON MONOXIDE STATISTICS

COMPUTATIONAL COSTS

CONCLUSION AND PERSPECTIVES

- A new model based on the coupling between Thickened Flame Model (TFM) and Adaptive Mesh Refinement (AMR) has been developed for premixed and stratified combustion.
- TFM-AMR model has been validated on the Cambridge swirled burner in premixed and stratified operating conditions.

• Conclusions:

- TFM-AMR leads to an optimization of the flame simulation providing iso-resolution at lower computational cost compared to conventional simulations.
- For similar costs, TFM-AMR enables to perform simulations with a better mesh resolution and hence improving predictions.

• Perspectives:

- > In depth study of unresolved turbulence / flame interactions when using TFM-AMR
- Extension of TFM-AMR to spray combustion

Innovating for energy

Find us on:

www.ifpenergiesnouvelles.com

@IFPENinnovation

BACK-UP

- ➤ G. Boudier (2007), Methane/air flame with 2-step chemistry: 2S-CH4 -CM2, CERFACS technical report.
- O. Colin, F. Ducros, D. Veynante, T. Poinsot (2000), A thickened flame model for large eddy simulations of turbulent premixed combustion, Physics of Fluids, Volume 12.
- M. S. Sweeney, S. Hochgreb, M. J. Dunn, R. S. Barlow (2012), The structure of turbulent stratified and premixed methane/air flames I: Non-swirling flows, Combustion and Flame, Volume 159, Pages 2896-2911.
- P. S. Volpiani, T. Schmitt, D. Veynante (2017), Large eddy simulation of a turbulent swirling premixed flame coupling the TFLES model with a dynamic wrinkling formulation, Combustion and Flame, Volume 180, Pages 124-135.
- G. Wang, M. Boileau, D. Veynante (2011), Implementation of a dynamic thickened flame model for large eddy simulations of turbulent premixed combustion, Combustion and Flame, Volume 158.Pages 2199-2213.

RESULTS: NON-REACTING FLOW

SUSTAINABLE MOBILITY

28 © 2016 IFPEN

• Thickening factor: the flame is broadened by a factor
$$\mathcal{F} = \max\left(\frac{n_{res}\Delta_x}{\delta_l^0(\phi)}, 1\right)$$

Where n_{res} is the number of grid points in the flame thickness

• Scaling laws:
$$\delta^0_l \propto \sqrt{rac{D_{th}}{\dot{\Omega}}}$$
 and $S^0_l \propto \sqrt{D_{th}\dot{\Omega}}$

 $\begin{bmatrix} D_{th}: \text{Heat diffusivity} \\ \dot{\Omega}: \text{Mean reaction rate} \end{bmatrix}$

• Modeling requirements: $\delta_l^0 \to \mathcal{F} \delta_l^0$ and $S_l^0 \to S_l^0$ > Diffusion multiplied by \mathcal{F} and reaction rates by $1/\mathcal{F}$

Transport equation for species mass fractions:

$$\frac{\partial \overline{\rho} \widetilde{Y}_k}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u} \widetilde{Y}_k}{\partial x} = \frac{\partial}{\partial x} \left(\mathcal{F} \frac{\mu}{Sc} \frac{\partial \widetilde{Y}_k}{\partial x} \right) + \frac{1}{\mathcal{F}} \overline{\rho} \widetilde{\dot{\omega}}_k$$

• Final transport equation for species mass fractions (TFM model):

$$\frac{\partial \overline{\rho} \widetilde{Y}_k}{\partial t} + \frac{\partial \overline{\rho} \widetilde{u} \widetilde{Y}_k}{\partial x} = \frac{\partial}{\partial x} \left(\mathcal{F} \Xi_\Delta \frac{\mu}{Sc} + (1 - \hat{S}) \frac{\mu_t}{Sc_t} \frac{\partial \widetilde{Y}_k}{\partial x} \right) + \frac{\Xi_\Delta}{\mathcal{F}} \overline{\rho} \widetilde{\dot{\omega}}_k$$

- Resolution of the flame front thickness
- Accurate turbulent propagation speed
- ✓ Only flame front is thickened

• Principle:

 \succ Setting a target flame thickening value \mathcal{F}_{target}

 \succ Computing the theoretical AMR level n_{AMR}^* to reach the \mathcal{F}_{target} value

• Relationship between n_{AMR}^* and \mathcal{F}_{target} :

$$\frac{\delta_l^0(\phi)\mathcal{F}_{target}}{n_{res}} = \frac{\Delta_x^{Base}}{2^{n_{AMR}^*}}$$

• Theoretical AMR level:

$$n_{AMR}^{*} = \frac{1}{\log(2)} \log\left(\frac{n_{res}\Delta_{x}^{Base}}{\delta_{l}^{0}(\phi)\mathcal{F}_{target}}\right)$$

