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INTRODUCTION 

Regulation on pollutants emissions become stricter 

=> Need for highly accurate numerical tools to design systems 

 

 

Large-Eddy Simulation (LES) routinely used in the industry 

 

 

New technologies with low emissions based on lean premixed and stratified 
combustion regimes 
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MODELING ISSUES IN PREMIXED/STRATIFIED COMBUSTION 

ISSUE 1: The flame structure is not 
resolved on the LES grid as the LES grid 
size is typically larger than the flame. 

ISSUE 2: Interactions between unresolved 
turbulent structures and the flame front 
have to be modeled. 

(Typically 0.5 to a few mm) 

Large-Eddy Simulation (LES): Large resolved scales + small modelled scales 

Unresolved 
turbulent structures 
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THICKENED FLAME MODEL (TFM) 

Flame surface 
𝑨𝟎 of the 
resolved 

thickened flame 

Flame surface 𝑨 of 
the original flame 

• The flame front is artificially thickened to ensure 
sufficient resolution 

• Subgrid scale (SGS) interactions described by a wrinkling 
factor: 

• Turbulent flame speed propagation: 
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ISSUE 

Performance of the TFM model decreases when the mesh size increases (less 
flame/turbulence interactions resolved; more is modelled) 

 

LES is expensive => mesh resolution is limited 

 

Opportunity: Adaptive Mesh Refinement (AMR) 
 Idea: Refine the mesh only where necessary and hence reduce computational costs 

OBJECTIVE: couple TFM and AMR to propose a model for highly accurate simulation of 
gas turbines at low computational cost 
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AGENDA 

I. TFM-AMR model: coupling Thickened Flame Model with Adaptive 
Mesh Refinement 

 

II. Validation of TFM-AMR on planar laminar flames 

 

III. Simulation of the Cambridge stratified burner 

 

IV. Conclusion 
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ADAPTIVE MESH REFINEMENT: PRINCIPLE 

LES SOLVER 

 Solving TFM model equations: 
AMR algorithm 

Generation of new grid 
using user-defined 

criterion 

Resolved fields and 
modeling variables 

Updated refined mesh 

AMR inputs 

 AMR sensor 
 AMR level 

 Equations solved on current AMR mesh 
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TFM-AMR MODEL: AMR SENSOR DEFINITION 

Dynamic TFM modeling framework: We only thicken in the 
flame  

=> Definition of a flame sensor 𝑆 

AMR is activated when 𝐒 > 𝟎 (equivalently: 𝓕 > 𝟏 ) 

𝑺 = 𝟎 𝑺 = 𝟏 
Redefinition of the thickening factor: 
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TFM-AMR MODEL: AMR LEVEL DEFINITION 

AMR mesh size:  

 => Thickening factor in flame region: 

Default strategy: set a constant AMR refinement level when the AMR sensor is active 

  

Flame front 

Flame front 

Default: constant refinement 

AMR adapted to local flame conditions: 
no refinement if not necessary 
 A target value for ℱ is set 

Solution retained: adapt the AMR level to local flame 
conditions to optimize the number of added nodes. 

 

Flame front 
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PLANAR LAMINAR FLAME SET-UP 

Numerical set-up: 
- Solver: CONVERGE 
- Equivalence ratio: 𝜙 = 0.75 
- 30 species skeletal mechanism 

for 𝐶𝐻4 

BURNT GASES 

FRESH GASES 

Set-up: planar laminar flame propagation 

Laminar flame propagation speed: 
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PLANAR LAMINAR FLAME SIMULATIONS 

SIMULATION 1: TFM on a regular mesh 

SIMULATION 2: TFM-AMR with ℱ𝑡𝑎𝑟𝑔𝑒𝑡 = 5 

on coarse mesh  

SIMULATION 3: TFM-AMR with ℱ𝑡𝑎𝑟𝑔𝑒𝑡 = 2.5 

on coarse mesh  
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RESULTS: LAMINAR FLAME PROPAGATION 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟓 => 

𝚫𝐱 = 𝟎. 𝟓𝐦𝐦 in flame) 

: TFM on standard mesh 
(𝚫𝐱 = 𝟎. 𝟓𝐦𝐦) 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟐. 𝟓 

=> 𝚫𝐱 = 𝟎. 𝟐𝟓𝐦𝐦 in flame) 
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RESULTS: LAMINAR FLAME STRUCTURE 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟓 => 

𝚫𝐱 = 𝟎. 𝟓𝐦𝐦 in flame) 

: Reference laminar flame 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟐. 𝟓 

=> 𝚫𝐱 = 𝟎. 𝟐𝟓𝐦𝐦 in flame) 

: TFM on standard mesh 
(𝚫𝐱 = 𝟎. 𝟓𝐦𝐦) 
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III. VALIDATION ON A 3-D BURNER: EXPERIMENTAL  SET-UP 

Side view 

Top view 

i i o o 

OPERATING CONDITIONS 
Flow: 
- Inner/Outer tube speeds: 𝑈𝑖 = 8.31, 𝑈𝑜 = 18.7  
- Reynolds numbers: 𝑅𝑒𝑖 = 5960, 𝑅𝑒𝑜 = 11500 
Flame: 

Cambridge SwB burner (Sweeney et al., 2012): 

NUMERICAL SET-UP 
Solver: CONVERGE CFD SOFTWARE 
Chemistry: 
- 30 species skeletal mechanism 
- SAGE chemistry solver with adaptive zoning to 

speed up calculations 
Physical models: 
- Turbulence model: SIGMA 
- SGS wrinkling model : algebraic  Charlette 

Configuration Inlet mixtures 

SwB1 (premixed) 𝜙𝑖 = 0.75 ; 𝜙𝑜 = 0.75 

SwB5 (stratified) 𝜙𝑖 = 1.0 ; 𝜙𝑜 = 0.5 
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VALIDATION STRATEGY 

Non-reacting flow simulation on coarse LES grid 

Flame simulation with TFM and embedded 
refined grid 

Flame simulation with TFM and AMR 

Default option (used in other CFD codes): embedding 
in a large area 

𝓕𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟓 ⇒ Δ𝑥 = 0.5𝑚𝑚 for 𝜙 = 0.75 

New methodology: AMR on coarse LES grid 

Comparison to validate the 
TFM-AMR strategy 

𝚫𝒙 = 𝟏𝒎𝒎 

𝚫𝒙 = 𝟏𝒎𝒎 𝚫𝒙 = 𝟎. 𝟓𝒎𝒎 
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TFM-AMR MODEL BEHAVIOR 
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TFM-AMR MODEL BEHAVIOR 

Region of premixed burning 
(𝝓 = 𝟎. 𝟕𝟓) 
=> 𝒏𝑨𝑴𝑹

∗ = 𝟐 

Dilution by air co-flow 
=> 𝝓 is decreased 
=> 𝒏𝑨𝑴𝑹

∗ ≈ 𝟏 

Mixing layers 

AIR CO-FLOW 
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COMPARISON WITH EXPERIMENT: TEMPERATURE 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟓) 

: Embedded TFM 



19 

 

S U S T A I N A B L E    M O B I L I T Y 

   

19 |    ©  2 0 1 6  I F P E N  

COMPARISON WITH EXPERIMENT: CARBON MONOXIDE 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟓) 

: Embedded TFM 
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AMR MESH REFINEMENT STUDY: STRATEGY 

AMR refinement study: 

TFM-AMR with  𝓕𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟓 TFM-AMR with  𝓕𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟐. 𝟓 

AMR 𝑛𝐴𝑀𝑅 = 2 
(Δ𝑥 = 0.5𝑚𝑚) AMR 𝑛𝐴𝑀𝑅 = 3  

(Δ𝑥 = 0.25𝑚𝑚) 

REFINEMENT 

AMR 𝑛𝐴𝑀𝑅 = 2 
(Δ𝑥 = 0.5𝑚𝑚) 
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TEMPERATURE STATISTICS 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟓) 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟐. 𝟓) 
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CARBON MONOXIDE STATISTICS 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟓) 

: TFM-AMR (ℱ𝒕𝒂𝒓𝒈𝒆𝒕 = 𝟐. 𝟓) 
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COMPUTATIONAL COSTS 
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CONCLUSION AND PERSPECTIVES 

A new model based on the coupling between Thickened Flame Model (TFM) and Adaptive Mesh 
Refinement (AMR) has been developed for premixed and stratified combustion. 

 

TFM-AMR model has been validated on the Cambridge swirled burner in premixed and stratified 
operating conditions. 

 

Conclusions: 
TFM-AMR leads to an optimization of the flame simulation providing iso-resolution at lower 

computational cost compared to conventional simulations. 

For similar costs, TFM-AMR enables to perform simulations with a better mesh resolution and hence 
improving predictions. 

 

Perspectives:  
 In depth study of unresolved turbulence / flame interactions when using TFM-AMR 

Extension of TFM-AMR to spray combustion 
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RESULTS: NON-REACTING FLOW 

: Simulation on coarse grid 

: Simulation on refined grid 
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FLAME THICKENING 

Thickening factor: the flame is broadened by a factor 

 

Where 𝑛𝑟𝑒𝑠 is the number of grid points in the flame thickness 

 

Scaling laws:                             and 

 

Modeling requirements:                       and  
Diffusion multiplied by 𝓕 and reaction rates by 𝟏 𝓕  

 

Transport equation for species mass fractions: 

 

𝐷𝑡ℎ: Heat diffusivity 

Ω : Mean reaction rate 
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SPECIES MASS FRACTIONS TRANSPORT EQUATIONS 

 

Final transport equation for species mass fractions (TFM model): 

 

 Resolution of the flame front 
thickness 

 Accurate turbulent 
propagation speed 

 Only flame front is thickened 
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TFM-AMR MODELING STRATEGY: AMR LEVEL COMPUTATION 

Principle: 

Setting a target flame thickening value ℱ𝑡𝑎𝑟𝑔𝑒𝑡 

Computing the theoretical AMR level 𝑛𝐴𝑀𝑅
∗  to reach the ℱ𝑡𝑎𝑟𝑔𝑒𝑡 value  

 

Relationship between 𝑛𝐴𝑀𝑅
∗  and ℱ𝑡𝑎𝑟𝑔𝑒𝑡: 

 

 

Theoretical AMR level: 


